Design Exercise for the Modification of a MODU to a FPU Semisubmersible

Anders Martin Moe
Wood Group Mustang Norway
Agenda

• Background
• Design differences drilling semi vs FPU
• Main design changes required for converting MODU
• Design case – A5000 to FPU
• Qualitative feasibility evaluation
Background

• For FPSOs conversion of tankers typically account for close to 2/3rds

• Conversion economically attractive for FPSOs

• Conversion of MODU (drillships, semis or jack-ups) to production rare the last 15 years (some in Brazil)

• Industry downturn has resulted in a dramatic reduction in fleet utilization for MODUs
 • Approx. 75% floater utilisation per January 20161

1 – Source: ClarksonsPlatou Offshore
Background

- Number of units stacked continues to rise
- Projects are delayed, postponed or cancelled:
 - Focus on increased confidence in reservoir and production profiles
 - Large investments postponed if possible
 - Early production facilities more interesting to some
- Continued strong focus on reducing CAPEX
 - Standardisation
 - Simplification
Background

• Drivers for MODU to FPU semi-submersible conversion:
 • Early production facility
 • Minimum processing facility
 • Full production facility
 • May not be feasible for harsh environment areas
Design differences MODU vs FPU

• Semi-submersible MODU
 • Typically subject to class renewal and inspection (dry-docking) every 5 years
 • Operation in multiple locations
 • Mooring/station keeping
 • Pre-laid or on-board mooring
 • POSMOOR:
 • Dynamically positioned
 • “Thruster assisted” mooring
 • Drilling utilities often integrated in hull structure
 • Mud, brine and powder tanks etc.
 • Transit speed generally a design requirement
 • Variable deck load (VDL) is the main design parameter
Design differences MODU vs FPU

• Semi-submersible floating production unit
 • Topsides weight and footprint main design driver
 • Typ. one location for entire design life
 • No dry-docking
 • Additional riser loads
 • Can have both production and drilling
 • Typically less integration of topsides utilities in hull
Design changes required for converting MODU to FPU

• Topsides
 • Major conversion
 • With drilling capabilities
 • Complete layout redesign to accommodate production
 • Typical minimum processing facility
 • Without drilling capabilities
 • Removal of drilling equipment
 • Design of new processing modules for installation
 • Check and verification of global structure for new loads
• Review and eventually upgrade utilities
 • Power generation
 • Cooling water
 • Fuel storage
Design changes required for converting MODU to FPU

• Hull
 • Verify payload limitations and stability
 • Limits maximum topsides weight and CoG
 • Assess hydrodynamic characteristics with regards to
 • Air gap requirements
 • Process system constraints
 • Riser system
 • Assess mooring system arrangement with regards to hull
 • Chain lockers (volume and structural capacity)
 • Chain jacks (replacement or additional units)
 • Fairleads (replacement or additional units)
 • Assess riser interface on hull
 • Riser hang off
 • Riser loads
Design changes required for converting MODU to FPU

• Hull
 • Hull structure and arrangement
 • Utility tanks may be repurposed
 • Check and verify fatigue life of fatigue sensitive details (i.e. bracings, pontoon – column transition, column top)
 • Evaluate installation of transverse pontoons and removal of bracings
 • Check ballast capacity and tank arrangement to ensure possibility to trim platform to even keel at operational draft
 • Check hull systems design for compliance with FPU requirements

• Lifetime extension
 • Verify accumulated fatigue damage
 • Establish inspection regime and acceptance criteria in lieu of dry-docking and class renewal inspections including risk based inspection
A5000 semi-submersible MODU to FPU
A5000 semi to FPU

• A5000 MODU
 • Main Particulars

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square Column Width</td>
<td>15.50 m</td>
</tr>
<tr>
<td>Number of Columns</td>
<td>4</td>
</tr>
<tr>
<td>Pontoon Width</td>
<td>16.50 m</td>
</tr>
<tr>
<td>Pontoon Height</td>
<td>10.05 m</td>
</tr>
<tr>
<td>Operational Draught</td>
<td>17.50 m</td>
</tr>
<tr>
<td>Elevation Underside Deck Box</td>
<td>29.55 m</td>
</tr>
<tr>
<td>Overall Width</td>
<td>70.50 m</td>
</tr>
<tr>
<td>Overall Length</td>
<td>104.50 m</td>
</tr>
<tr>
<td>Deck Box Height</td>
<td>8 m</td>
</tr>
<tr>
<td>Deck Area</td>
<td>5 812 m²</td>
</tr>
<tr>
<td>Displacement (approx.)</td>
<td>40 800 tonnes</td>
</tr>
</tbody>
</table>

• Lightship weight 25 500 tonnes @ VCG 26.5m
• Variable deck load 5000 tonnes
A5000 semi to FPU

• A5000 FPU
 • Identical hull particulars as the MODU as base case
 • Weight budget:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight</th>
<th>VCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull Weight (Including Riser and Mooring Forces)</td>
<td>22 100 tonnes</td>
<td>11 m</td>
</tr>
<tr>
<td>Topsides Dry Weight</td>
<td>11 000 tonnes</td>
<td>44 m</td>
</tr>
<tr>
<td>Fluids & Consumables (ex. Ballast)</td>
<td>3 700 tonnes</td>
<td>17 m</td>
</tr>
<tr>
<td>Margin</td>
<td>2 000 tonnes</td>
<td>29 m</td>
</tr>
<tr>
<td>Ballast</td>
<td>2 000 tonnes</td>
<td>6 m</td>
</tr>
<tr>
<td>Total</td>
<td>40 800 tonnes</td>
<td>21 m</td>
</tr>
</tbody>
</table>

• Topsides payload capacity can be increased by relatively minor modifications
A5000 semi to FPU

• A5000 potential hull modifications:
 • Blisters and sponsons
 • Offers improved stability and additional topsides payload
 • Will influence motion characteristics
 • Relatively minor modification
 • Replace bracings with transverse pontoon
 • Requires modifications to areas subject to high stresses
 • Offers significantly increased topsides payload (order of magnitude 5000 tonnes)
 • May be positive with regards to service life compared to bracings
 • Transverse pontoon + blisters and sponsons
 • Relatively large modification
 • Offers significantly improved stability and additional topsides payload
Qualitative Feasibility Evaluation

• Technical feasibility
 • Challenges:
 • Lifetime extension and fatigue sensitive areas
 • Pontoon/bracing configuration
 • Payload capacity for integrated production and drilling, and for full production facilities
 • Riser interface and hang-off
 • Mooring arrangement
 • Air gap can limit the operational areas
 • Opportunities
 • Upgrade and life extension of aging units are well known in the industry (i.e. Aker H3 rigs from the 1970s still operating, some as deepwater units)
 • Steel replacement/renewal also well known in the industry
Qualitative Feasibility Evaluation

• Commercial feasibility
 • Challenges:
 • Cost of upgrade/renewal scope
 • Topside facility integration
 • Suitable fields
 • Infrastructure
 • Environmental conditions (e.g. wind and wave loading)
 • Reservoir characteristics
 • Opportunities
 • Lease and operate models
 • Reduced CAPEX – Lower hull cost, reduced topsides cost?